

Problem Statements

Object detectors can be fooled by making small imperceptible changes to images.

These pose a challenge to various domain like autonomous cars and ships.

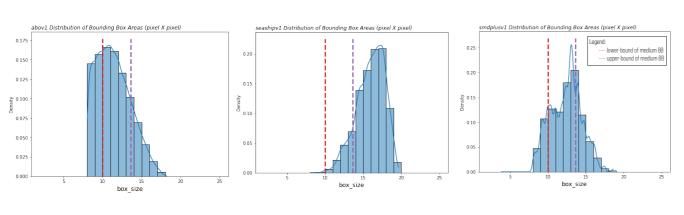
Adversarial attacks can cripple performance of the object detectors.

TEAM 7

Our Objectives

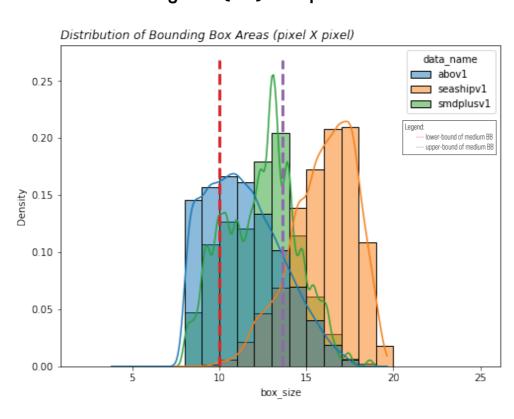
→ Implement black box adversarial attack against object detection models Train different YOLO versions on different combinations of maritime datasets Implement TOG (Targeted Objectness Gradiant) adversarial attack

Study the performance of transferability of Adversarial Attack between various maritime datasets and YOLO versions.


Datasets

Dataset Bounding Box (BB) Specifications:

Source Dataset	Mean BB Size (log_2)	No. Small BB	No. Medium BB	No. Large BB	No. Total BB	
ABO	11.41	10047	17467	5713	33227	
SS	15.98	15	1034	8172	9221	
SMD	12.39	26921	97297	48369	172587	


Datasets are abbreviated as follow: AboShips=ABO, SeaShips=SS, SMDPlus=SM

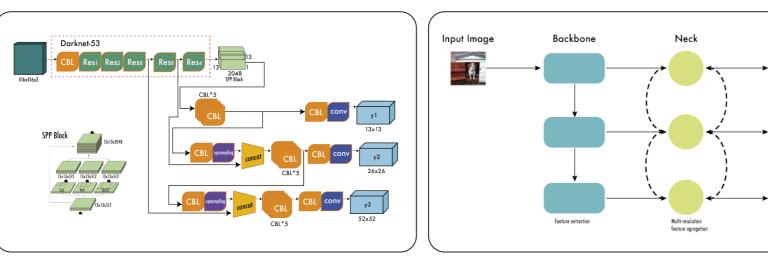
Dataset Bounding Box (BB) Distributions:

Object Size Visualization

Dataset Bounding Box (BB) Comparison:

Model & Dataset Compositions

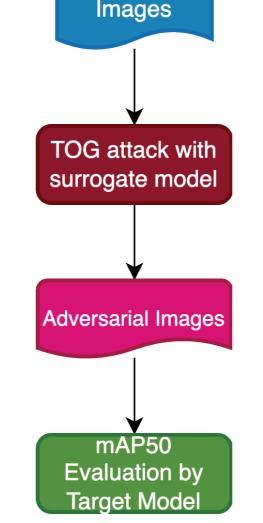
Dataset ID	Source Dataset(s)	Model ID	Source Architecture	Source Dataset	mAP50	mAP50-95
D1	ABO	M1	YoloV3	D1	0.8154	0.4453
D2	SS	M2	YoloV3	D2	0.9926	0.8469
D3	SMD	M3	YoloV3	D3	0.9900	0.9169
D4	ABO, SS	M4	YoloV3	D4	0.8738	0.5573
D5	ABO, SMD	M5	YoloV3	D5	0.9722	0.8343
D6	SS, SMD	M6	YoloV3	D6	0.9899	0.8956
D7	ABO, SS, SMD	M7	YoloV3	D7	0.9753	0.8252
	1120,00,000	M8	YoloV5	D1	0.8190	0.4522
		M9	YoloV5	D2	0.9930	0.8306
• Maralal Tradi	Model Training Scheme		YoloV5	D3	0.9895	0.9144
Model Irali			YoloV5	D4	0.8715	0.5561
7 Dotos	7 Dataset Combination (with 3 Datasets)		YoloV5	D5	0.972	0.8396
			YoloV5	D6	0.9897	0.9006
(with 3			YoloV5	D7	0.9732	0.8294
0 0010	3 YOLO Models (YOLOv3, YOLOv5, YOLOv8) 21 possible combinations of models (3 (YOLO) X 7(Dataset) = 21)		YoloV8	D1	0.8158	0.4518
3 YULU			YoloV8	D2	0.9940	0.8454
(YOLOv			YoloV8	D3	0.9882	0.9229
			YoloV8	D4	0.8753	0.5596
21 poss			YoloV8	D5	0.9731	0.8436
לא נאטו			YoloV8	D6	0.9880	0.9033
الال			YoloV8	D7	0.9739	0.8338


Model Architectures

YOLO architecture Properties:

YOLO Version	Variant	Number of Layers	Parameters	Weight File Size (MB)
YOLOv3	Original	310	103754144	208
YOLOv5	Extra Large	493	97276448	195
YOLOv8	Extra Large	365	68229648	137

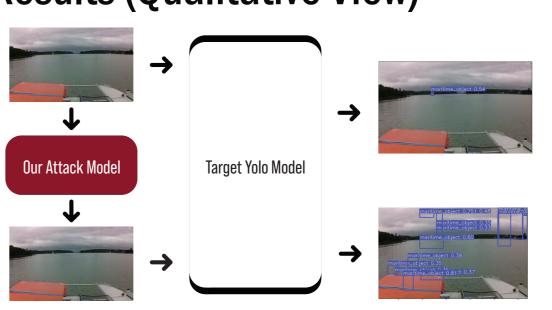
YOLOv3, YOLOv5, YOLOv8 selected because of extensive support of the Ultralytics library


YOLO architecture Designs:

Old Design (YOLOv3)

Modern Design (YOLOv5, YOLOv8)

General Attack Flow



Results (Quantitative View)

mAP50 Reduction; target: predict, surrogate: perturb, gray boxes = white box attack

$\begin{array}{c} \text{Target Model} \rightarrow \\ \text{Surrogate Model} \ \downarrow \end{array}$	M1	M2	M4	M8	M9	M11	M15	M16	M18
M1	0.725	0.004	0.347	0.278	0.002	0.201	0.284	0.001	0.207
M2	0.127	0.486	0.138	0.081	0.030	0.166	0.077	0.049	0.141
M4	0.476	0.041	0.656	0.289	0.009	0.245	0.321	0.014	0.240
M8	0.356	0.005	0.273	0.663	0.004	0.370	0.467	0.001	0.279
M9	0.097	0.071	0.149	0.087	0.326	0.260	0.083	0.096	0.180
M11	0.314	0.021	0.286	0.468	0.033	0.557	0.425	0.019	0.325
M15	0.341	0.005	0.238	0.371	0.002	0.275	0.705	0.002	0.310
M16	0.106	0.067	0.166	0.096	0.074	0.231	0.117	0.368	0.241
M18	0.344	0.032	0.297	0.383	0.020	0.343	0.512	0.034	0.583

Results (Qualitative View)

Targeted Objectness Gradient (TOG) Attacks

- A family of attacks that exploit various components of Object Detector Loss Function
- Attack selected for our experiements: TOG-Fabrication.
- Fabrication exploits entire loss function by multiplying it by
- -1 to compute the gradient. → All TOG attacks conforms to the following general form:
 - $x'_{t+1} = \prod [x'_t \alpha \Gamma(\frac{\nabla L^*(x'_t; O^*, W)}{\nabla x'_t})]$

Discussion

- As Expected, the higher the intersection between trained datasets the better the attack performs
- Models trained on dataset with smaller bounding box distribution are more susceptible to adversarial attacks.
- YOLOv5 performs the best against adversarial attacks, which may mean the higher number of layers in a model result in better robustness against adversarial attacks.

Future Work

- 'Validate surrogate model performance against other datasets
- Multi Label cross-data transferability attack performance
- Meta-surrogate training and attack performance on multi & Single labels

