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Introduction
Concerns about the opacity of AI models in cancer diagnosis have led to the
emergence of Explainable AI (XAI) focused on creating transparent and interpretable
medical AI technologies. Current XAI techniques like Class Activation Maps (CAMs),
SHAP, and Quantus provide only partial understanding. This project proposes a
novel approach using texture analysis in cancer datasets to enhance AI model
interpretability. By emphasizing specific texture features in medical images during
training, the goal is to elucidate how AI models make predictions and improve
trustworthiness. The project aims to bridge the gap between AI predictions and
human understanding in cancer diagnosis through rigorous analysis of texture
features and their correlation with AI predictions.

Methodology
The overall pipeline is illustrated in Figure 1.
1. TrainSegmentation Model: Utilized U-Net and DeepLabv3 on CBIS-DDSM dataset
for precise tumor delineation.
2. Texture Feature Extraction: Employ GLCM, LBP, and aTEM methods to extract
texture features from raw images and segmentation model feature maps.
3. Correlation Analysis: Correlation of texture energy maps from model layers with
extracted features, identifying influential texture types and features across different
model levels.

Figure 1: XAI Pipeline.

Figure 2: Sample breast cancer image from 
CBIS-DDSM dataset.

We obtained feature maps across four layers of our model for an input image, as
illustrated in Figure 3, depicting the first 10 feature maps for each layer. This
visualization highlighted the evolution of features as input images traversed different
layers. Our focus was on texture features influencing the model's mask predictions,
with a specific emphasis on GLCM features. Extracting 13 GLCM features from the
input image, including ASM, Contrast, Correlation, Variance, IDM, Homogeneity,
Sum Entropy, Entropy, Difference Entropy, IMC1, IMC2, MCC, and Autocorrelation,
allowed for a detailed analysis of influential factors in our model's decision-making
process.

Further Works
Our work continues with the successful implementation of the GLCM method for
texture feature extraction in our cancer diagnosis segmentation model. Ongoing
efforts involve integrating the aTEM method and progressing with our correlation
approach to link texture energy maps with analysis outcomes. These additions aim to
deepen our understanding of influential features across different layers, enhancing
the interpretability and accuracy of our AI system in cancer diagnosis.

Conclusion
Our project significantly improves transparency in cancer diagnosis through AI. Our
robust segmentation model, trained on a relevant dataset, incorporates advanced
texture analysis and ongoing correlation efforts, ensuring more interpretable and
reliable medical outcomes. This collaborative approach marks a significant step in
bridging the gap between AI predictions and human understanding in cancer
diagnosis.

Position First Approach Second approach 
Layer 1

First IMC1 (Score: 0.00116) IMC1 (Score: 0.33411)
Second ASM (Score: 0.11807) ASM ( Score: 0.41204)

Third Autocorrelation (Score: 0.13050) Autocorrelation (Score: 0.41806)
Layer 2

First IMC1 (Score: 0.00084) IMC1 (Score: 0.33389)
Second ASM (Score: 0.13291) ASM (Score: 0.42194)

Third Autocorrelation (Score: 0.16339) Autocorrelation (Score: 0.44226)
Layer 3

First IMC1 (Score: 0.00265) IMC1 (Score: 0.33510)
Second IDM (Score: 0.25426) IDM (Score: 0.50284)

Third Autocorrelation (Score: 0.31222) Autocorrelation ( Score: 0.54148)
Layer 4

First IMC1 (Score: 0.000755) IMC1 ( Score: 0.3338)
Second Autocorrelation (Score: 0.02375) Autocorrelation (Score: 0.3491)

Third ASM (Score: 0.0745) ASM (Score: 0.3830)
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Preliminary Results and Analyses

Table 1: Model performance for input images

Figure 3: Layer-wise feature maps (First 10 for each layer)

Table 2: Comparison of 13 GLCM Features Extracted from 2048 Feature Maps in 
Each Layer of the Model Using Average Absolute Differences and Various Distance 

Metrics.

Model Input Image Ground 
Truth

Predicted 
Mask

mIoU

Deeplabv3 93.0

UNet 77.82

Sample Cancer Image ROI Cancer area Mask Dataset


