Developing a Fundamental Understanding of Explainable Artificial Intelligence using Texture Analysis

Md Masum Billah?, Pragati Manandhar’, Sarosh Krishan', Alejandro Cedillo Gamez!, Kurt K. Benke?, Sepinoud Azimi'-3, Janan Arslan*

Affiliations: 1. EMJMD Program, EDISS, Faculty of Science and Engineering, Information Technology, Abo Akademi University, 20500, Turku, Finland.
2. School of Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.
3. Department of Information and Communication Technology, Technology, Policy and Management, Delft University of Technology, Delft, 2600GA, The Netherlands.
4. Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitie Salpétriere, F-75013 Paris, France.

Contact Email: Md.Billah@abo.fi

Introduction

As Artificial Intelligence (Al) continues to advance, particularly in healthcare applications
like cancer diagnosis, concerns have arisen regarding the opacity of many Al models. The
inability to comprehend how these models extract features from medical data for predictions
has sparked debates and raised questions about their reliability. In response, Explainable Al
(XAI) has emerged as a field dedicated to creating transparent, interpretable, and accountable
Al technologies for medical use. While current XAl research utilizes techniques such as Class
Activation Maps (CAMs) and tools like SHAP [5] and Quantus [6] to visualize and quantify
features influencing Al predictions, these approaches offer only a partial understanding. This
project proposes a novel approach to enhance the interpretability of AI models by leveraging
texture analysis, particularly in cancer datasets. By focusing on specific texture features within
medical 1images during training, this approach aims to shed light on how AI models make
predictions and improve their trustworthiness. Through rigorous analysis of texture features
extracted from medical images and correlation with Al predictions, this project aims to bridge
the gap between Al predictions and human understanding in cancer diagnosis.

Methodology

The overall pipeline is illustrated 1n Figure 1.

1. Obtain Trained Segmentation Model: Deep learning models, such as the U-Net and
DeepLabv3 were trained on the Curated Breast Imaging Subset of DDSM (CBIS-DDSM)
dataset (Figure 2) [7]. This dataset was chosen for its detailed annotations and minimal class
imbalance. To enhance model robustness, we employed patch-level segmentation with
carefully selected patch sizes, ensuring precise tumor delineation and effective learning
outcomes.

2. Extract Texture Features: Advanced methods, including the Gray Level Co-occurrence
Matrix (GLCM), Local Binary Patterns (LBP), and Adaptive Texture Energy Measure
(aTEM) methods, were utilized to extract texture features from both raw input images and the
feature maps generated by each layer of the segmentation models. These extracted texture
features were then numerically represented for detailed analysis in subsequent stages of the
study.

3. Correlate Texture Energy Map: In the final phase, texture energy maps from each model
layer were correlated with the outcomes of texture analysis. Specific layers of interest, such as
'backbone.layerl’, 'backbone.layer2', 'backbone.layer3', and 'backbone.layerd', were 1dentified.
Correlation coefficients were used to quantify the relationships, ranking emphasized texture
types and providing insights into the influential features across different model levels.
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Figure 2: Sample breast cancer image from

Figure 1: XAI Pipeline. CBIS-DDSM dataset.

Preliminary Results and Analyses

Two segmentation models, DeepLabv3 and U-Net, were trained, and we obtained mean IoUs
0of 93.0 and 77.82, respectively. Table 1 shows the models’ performance for cancer images.
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Table 1: Model performance for input images

Afterward, we obtained the feature maps of our model for an input 1image across four layers.
Figure 3 illustrates layer-wise feature maps, displaying the first 10 feature maps for each
layer. This visualization provides a detailed view of how different layers within the model
process and transform the input images, highlighting the evolution of features as they pass
through the network.

Then we focused on the texture features that influence the model's predictions of the mask.
We extracted GLCM features. There are 13 features extracted from the input image, including
Angular Second Moment (ASM), Contrast, Correlation, Variance, Inverse Difference Moment
(IDM), Homogeneity, Sum Entropy, Entropy, Difference Entropy, Information Measure of
Correlation 1 (IMC1), Information Measure of Correlation 2 (IMC2), Maximal Correlation
Coeftficient (MCC), and Autocorrelation.

Figure 3: Layer-wise feature maps (First 10 for each layer)

We extracted these 13 GLCM features from 2048 feature maps from each layer (Layer 1,
Layer 2, Layer 3, and Layer 4) of the model. Then, we compared the GLCM features of the
original image with those of the feature maps using two different approaches.

First Approach: Computes the average absolute differences between the GLCM features of
the original image and those of each feature map.

Second Approach: Computes the average distances/similarities between GLCM features of
the original image and those of each feature map using Euclidean distance, Manhattan
distance, and cosine similarity.

First Approach Second approach

Layer 1
First IMC1 (Score: 0.00116) IMCI1 (Score: 0.33411)
Second ASM (Score: 0.11807) ASM ( Score: 0.41204)
Third Autocorrelation (Score: 0.13050) Autocorrelation (Score: 0.41806)
Layer 2
First IMCI1 (Score: 0.00084) IMCI1 (Score: 0.33389)
Second ASM (Score: 0.13291) ASM (Score: 0.42194)
Third Autocorrelation (Score: 0.16339) Autocorrelation (Score: 0.44226)
Layer 3
First IMCI1 (Score: 0.00265) IMCI1 (Score: 0.33510)
Second IDM (Score: 0.25426) IDM (Score: 0.50284)
Third Autocorrelation (Score: 0.31222) Autocorrelation ( Score: 0.54148)
Layer 4
First IMCI1 (Score: 0.000755) IMCI1 ( Score: 0.3338)
Second Autocorrelation (Score: 0.02375) Autocorrelation (Score: 0.3491)
Third ASM (Score: 0.0745) ASM (Score: 0.3830)

Table 2: Top three texture features correlated with feature maps.

The analysis reveals the hierarchical influence of texture features within the model layers.
Initially, 1n the first and second layers, IMC1, ASM, and Autocorrelation emerge as pivotal
factors. Subsequently, IDM gains prominence 1n the third layer. Ultimately, Autocorrelation
ascends as the second most influential feature in the final layer. Throughout the model's
decision-making process, IMCI1, Autocorrelation, and ASM consistently exert the most
significant influence (Table 2).

Further Works

Our work continues with the successful implementation of the GLCM method in our
segmentation model, a crucial step for extracting texture features in cancer diagnosis.
Ongoing efforts include integrating the aTEM method to enhance the depth of texture
features. Additionally, our correlation method, correlating texture energy maps with analysis
outcomes, 1s 1n progress. These additions aim to provide a more comprehensive
understanding of influential features 1n different layers, ultimately enhancing the
interpretability and accuracy of our Al system for cancer diagnosis.

Conclusion

In summary, our project enhances cancer diagnosis transparency through AI. We trained a
robust segmentation model on a relevant dataset, integrated advanced texture analysis, and
correlated texture energy maps to reveal influential textures. This ensures more interpretable
and trustworthy medical outcomes. Our collaborative approach marks a significant step in
bridging the gap between Al predictions and human understanding in cancer diagnosis.
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