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e Segmentation algorithms play a crucial role in isolating

|« Develop a statistically driven adaptive loss function
regions of interest from medical images, enabling disease o Explore brain tumor datasets and preprocess
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different segmentation models

diagnosis, biomarker discovery, and predictive analysis
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e Challenges lie in the amount of high quality data for

tralnlng, annotation precision, and imbalance ° Develop q user interface for experimenting

 Existing loss functions offer some solutions to handle class

adaptive loss function tailored for imbalanced medical
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e 4 large datasets focusing on brain tumor MRI scans
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Table 1. Results for different loss functions - U-net
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e BCE tends to oversegment, while adaptive loss can

‘.;:}%F undersegment if not sure Loss Dice Coef Specificity Sensitivity Precision MAE
e Adaptive loss can segment small tumor regions which are
. BCE 0.9589 0.9995 0.9546 0.9634 0.0008
not part of the main tumor
e Focal loss and bce are the biggest competitors Adaptive 0.9577 0.9997 0.933 0.9787 0.0009

e Not all models work well with all loss functions -> some

Focal 0.9552 0.9996 0.9448 0.9711 0.0009

loss functions are not consistent

e All have a high dice similarity coefficient, but make some

crucial mistakes for extreme imbalance and small brain Fig 3. User interface - model prediction and overlays

and tumor regions
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Fig 4. User interface - model prediction analysis
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annotations, leading to false positives i

e Being consistent with true positives is crucial .\0\
e Oversegmenting is debatably a bigger issue than e
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