
Most popular functions imitate the shape of training
annotations, leading to false positives
Being consistent with true positives is crucial
Oversegmenting is debatably a bigger issue than
undersegmenting

CONCLUSION
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METHODOLOGY

Loss Dice Coef Specificity Sensitivity Precision MAE

BCE 0.9589 0.9995 0.9546 0.9634 0.0008

Adaptive 0.9577 0.9997 0.933 0.9787 0.0009

Focal 0.9552 0.9996 0.9448 0.9711 0.0009

INTRODUCTION
Segmentation algorithms play a crucial role in isolating
regions of interest from medical images, enabling disease
diagnosis, biomarker discovery, and predictive analysis
Challenges lie in the amount of high quality data for
training, annotation precision, and imbalance
Existing loss functions offer some solutions to handle class
imbalances, but are influenced by the format of the training
annotations
Our project focuses on developing a statistically driven
adaptive loss function tailored for imbalanced medical
imaging datasets
4 large datasets focusing on brain tumor MRI scans

OBJECTIVES
Develop a statistically driven adaptive loss function
Explore brain tumor datasets and preprocess
Benchmark against popular loss functions on
different segmentation models
Develop a user interface for experimenting

RESULTS
BCE tends to oversegment, while adaptive loss can
undersegment if not sure 
Adaptive loss can segment small tumor regions which are
not part of the main tumor
Focal loss and bce are the biggest competitors
Not all models work well with all loss functions -> some
loss functions are not consistent
All have a high dice similarity coefficient, but make some
crucial mistakes for extreme imbalance and small brain
and tumor regions

Fig 2. Predictions from different loss functions - U-net
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Fig 3. User interface - model prediction and overlays

Table 1. Results for different loss functions - U-net
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Fig 4. User interface - model prediction analysis


