
Introduction
The intermittent nature of renewable energy sources, such as wind and solar,  
disrupts the electricity grid stability and supply-demand balance. The
Automatic Frequency Restoration Reserve (aFRR) is a grid balancing
mechanism that matches the electricity consumption and production to
maintain the grid frequency at 50 Hz. However, predicting aFRR price
fluctuations is complex due to market volatility and the influence of external
factors. This project aims to develop a machine learning model to forecast
aFRR energy down and up prices for the next 48 hours. The goal is to enhance
grid stability, reduce electricity costs, and optimize the profitability of market
participants in the evolving energy landscape.
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Forecasting the behavior of the aFRR energy market

After testing multiple models, the baseline LightGBM model performed best and
was selected as the foundation. Initially, it used market prices and weather
features, but since market price features will be unavailable at prediction time,
we expanded the feature set with time-based, weather-based, and lagged
weather features to ensure the model had sufficient information. Later, we
incorporated Darts.LightGBM to take advantage of both past and future
covariates, along with backtesting and TimeSeriesSplit for validation.

When tested and evaluated using a sliding training window approach, the
LightGBM model with weather covariates outperforms benchmark results in
forecasting both up and down energy prices.

Future work

Conclusion

Our work continues with Darts.LightGBM hyperparameter tuning and sliding
window testing to refine and thoroughly evaluate the model. Future efforts will
focus on exploring advanced deep learning architectures, such as LSTMs and
RNNs, and transfer learning to improve forecasting accuracy.

Figure 4. Actual vs Predicted energy prices comparison for base LightGBM. 

Table 2: Sliding window testing comparison between predicted and benchmark values. 
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Figure 1. One week sample of aFRR energy prices.

Timeframe June 20 - Dec 1,
2024, Post-PICASSO 

Original Records 15,936
15-minute data

Aggregated 
Records

3,937
hourly data

Missing Data
3.89 %, both Down

and Up missing

Features 13 Fingrid and
weather features

Figure 2. Missing values of aFRR energy prices.

Table 1: Comparison of Base LightGBM and Darts.LightGBM Performance Metrics.

Our project improves energy price forecasting by using machine learning to
increase prediction accuracy and adaptability in volatile energy markets. We
addressed the challenge of limited real-time market data, ensuring the model is
practical for real-world applications. By enhancing forecasting precision, this
approach is especially beneficial for the Nordic market, where renewable energy
reliance leads to significant fluctuations in consumption and demand.
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