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INTRODUCTION

Cloud-based microservices are increasing energy

OBJECTIVES

A smart autoscaling policy that improves resource
utilization, optimizing for reduction in carbon emissions.

demand in data centers, making sustainability a

critical challenge in modern computing.

As digital infrastructure expands, we need
smarter, more sustainable autoscaling solutions
that optimize resource use and align with carbon-
aware computing to reduce environmental impact
without compromising performance.
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6 For Workload Forecasting

Use timeseries forecasting models (LSTM, AR, HTM) to
predict incoming web requests and make proactive
scaling decisions.
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TRADE-OFF ANALYSIS <[

Formulate trade-off policies that prioritize either response
time or carbon emissions, depending on situational demands.

ENERGY USAGE OF THE MODELS

Analyze the energy overhead associated with both the
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To have a reasonable trade-off between
sustainability and performance.

METHODOLOGY
DATASET

User Count Variation Over Time

Carbon Intensity

100 A —— User Count Over Time
r
NS 801
. } 50 -
Optimal Pod
Fully Connected Counts 40-
Layer 30 -

0 200 400 600 800

63 microservices written in many languages:
Java, Go, Python.

Peak user count: 100 users.

Duration: ~ 3 hours.

Slight increases, slight decreases, sharp

increases, sharp decreases, and fluctuations.

training and inference processes.
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Carbon Intensity 128 g C02/kWh 660 g C02/kWh
carbn HPA 81g 4181¢g
emissions

STGCN 3319 1252 g

Energy usage varies depending on carbon intensity, scaling up when energy is
cleaner and down when it's more carbon-intensive.

CHALLENGES (<

Balancing sustainability and performance.
Managing a complex microservices
architecture.

Handling workload variability.

Ensuring accurate workload forecasting.

|dentifying useful metrics.



